Relations between two log minimal models of log canonical pairs
نویسندگان
چکیده
منابع مشابه
2 00 9 Introduction to the log minimal model program for log canonical pairs
We describe the foundation of the log minimal model program for log canonical pairs according to Ambro’s idea. We generalize Kollár’s vanishing and torsion-free theorems for embedded simple normal crossing pairs. Then we prove the cone and contraction theorems for quasi-log varieties, especially, for log canonical pairs.
متن کاملNon-vanishing Theorem for Log Canonical Pairs
We obtain a correct generalization of Shokurov’s nonvanishing theorem for log canonical pairs. It implies the base point free theorem for log canonical pairs. We also prove the rationality theorem for log canonical pairs. As a corollary, we obtain the cone theorem for log canonical pairs. We do not need Ambro’s theory of quasi-log varieties.
متن کاملLog Canonical Singularities and Complete Moduli of Stable Pairs
0.1. This paper consists of two parts. In the first part, assuming the log Minimal Model Program (which is currently only known to be true in dim ≤ 3), we construct the complete moduli of “stable pairs” (X,B) of projective schemes with divisors that generalize the moduli space of n-pointed stable curves Mg,n to arbitrary dimension. The construction itself is a direct generalization of that of [...
متن کامل0 Log - Canonical Forms and Log Canonical Singularities
For a normal subvariety V of C with a good C∗-action we give a simple characterization for when it has only log canonical, log terminal or rational singularities. Moreover we are able to give formulas for the plurigenera of isolated singular points of such varieties and of the logarithmic Kodaira dimension of V \{0}. For this purpose we introduce sheaves of m-canonical and L2,m-canonical forms ...
متن کاملEffective Base Point Free Theorem for Log Canonical Pairs Ii
We prove Angehrn-Siu type effective base point freeness and point separation for log canonical pairs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics
سال: 2020
ISSN: 0129-167X,1793-6519
DOI: 10.1142/s0129167x20501037